MECHANISMS OF MODULATING ACTION OF LOW-INTENSITY LASER RADIATION ON THE PROLIFERATIVE ACTIVITY OF CELLS IN THE STROMAL AND VASCULAR FRACTION OF ADIPOSE TISSUE
Abstract and keywords
Abstract (English):
The efficacy of low-intensity laser radiation therapy using autologous cellular products based on adipose tissue, including stromalvascular fraction, has been shown to be effective in different forms of pathology and in reconstructive and plastic surgery. The review deals with the issues related to the methodological aspects of the stromal and vascular fraction isolation from the human adipose tissue as well as with the peculiarities of its application in experimental studies on animal models and in clinical practice. The mechanisms of low-intensity laser radiation effect on the cells of stromal-vascular fraction has been discussed. An analysis of recently published research results on the effects of laser radiation on mesenchymal stromal cells of adipose tissue is carried out. The results of experimental studies on the choice of optimal modes and parameters of low-intensity laser radiation with the aim of their application in complex cell technologies are discussed. The issues related to the therapeutic effects of low-intensity physical factors in autologous transplantation of the stromal-vascular fraction and mesenchymal stromal cells in various types of pathology are viewed. Further research on the mechanisms of low-intensity laser irradiation effects on various types of cells and tissues is required to expand the clinical application of cell-based therapy.

Keywords:
regenerative medicine, cell technologies, adipose tissue, stromal-vascular fraction, low-intensity laser radiation
Text
Text (PDF): Read Download
References

1. Charitos I.A., Ballini A., Cantore S., Boccellino M., Di Domenico M., Borsani E., Nocini R., Di Cosola M., Santacroce L., Bottalico L. Stem Cells: A Historical Review about Biological, Religious, and Ethical Issues. Stem Cells International. 2021; (2021): 9978837 p. https://doi.org/10.1155/2021/9978837

2. Hassanshahi A., Hassanshahi M., Khabbazi S., Hosseini-Khah Z., Peymanfar Y., Ghalamkari S., Su Y.W., Xian C.J. Adipose-derived stem cells for wound healing. Journal of Cellular Physiology. 2019; 234(6): 7903-7914. https://doi.org/10.1002/jcp.27922

3. Pak J., Lee J.H., Park K.S., Park M., Kang L.W., Lee S.H. Current use of autologous adipose tissue-derived stromal vascular fraction cells for orthopedic applications. Journal of Biomedical Science. 2017; 24(1): 9 p. https://doi.org/10.1186/s12929-017-0318-z

4. Kuo Y.R., Wang C.T., Cheng J.T., Kao G.S., Chiang Y.C., Wang C.J. Adipose-Derived Stem Cells Accelerate Diabetic Wound Healing Through the Induction of Autocrine and Paracrine Effects. Cell Transplantation. 2016; 25(1): 71-81. https://doi.org/10.3727/096368915x687921

5. Gatiatulina E.R., Manturova N.E., Dimov G.P., Vasil'ev V.S., Teryushkova Zh.I. Stromal'no-vaskulyarnaya frakciya zhirovoy tkani: mehanizm deystviya, perspektivy i riski mestnogo primeneniya. Plasticheskaya hirurgiya i esteticheskaya medicina. 2019; (2): 43-48. https://doi.org/10.17116/plast.hirurgia201902143

6. Zhao X., Guo J., Zhang F., Zhang J., Liu D., Hu W., Yin H., Jin L. Therapeutic application of adipose-derived stromal vascular fraction in diabetic foot. Stem Cell Research and Therapy. 2020; 11(1): 394. https://doi.org/10.1186/s13287-020-01825-1

7. Eremin P.S., Pigaleva N.A., Murzabekov M.B., Lebedev V.G., Lazareva N.L., Eremin I.I., Pulin A.A., Osipov A.N., Bushmanov A.Yu., Kotenko K.V. Issledovanie effektivnosti primeneniya autologichnyh kletochnyh produktov na osnove zhirovoy tkani dlya terapii tyazhelyh mestnyh luchevyh povrezhdeniy. Saratovskiy nauchno-medicinskiy zhurnal. 2014; 10(4): 838-844.

8. Lebedev V.G., Deshevoy Yu.B., Temnov A.A., Astrelina T.A., Rogov K.A., Nasonova T.A., Lyrschikova A.V., Dobrynina O.A., Sklifas A.N., Mhitarov V.A., Trofimenko A.V., Moroz B.B. Izuchenie effektov stromal'no-vaskulyarnoy frakcii, kul'tivirovannyh stvolovyh kletok zhirovoy tkani i parakrinnyh faktorov kondicionnoy sredy pri terapii tyazhelyh luchevyh porazheniy kozhi u krys. Patologicheskaya fiziologiya i eksperimental'naya terapiya. 2019; 63(1): 24-32. https://doi.org/10.25557/0031-2991.2019.01.24-32

9. Heeschen C., Lehmann R., Honold J., Assmus B., Aicher A., Walter D.H., Martin H., Zeiher A.M., Dimmeler S. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004; 109(13): 1615-22. https://doi.org/10.1161/01.cir.0000124476.32871.e3

10. Hu C., Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. Journal of Cellular and Molecular Medicine. 2018; 22(3): 1428-1442. https://doi.org/10.1111/jcmm.13492

11. AlGhamdi K.M., Kumar A., Moussa N.A. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers in Medical Science. 2012; 27(1): 237-49. https://doi.org/10.1007/s10103-011-0885-2

12. Poddubnaya O.A. Nizkointensivnaya lazeroterapiya v klinicheskoy praktike (Chast' 1). Vestnik vosstanovitel'noy mediciny. 2020; 6(100): 92-99. https://doi.org/10.38025/2078-1962-2020-100-6-92-99 

13. Friedenstein A.J., Piatetzky S., Petrakova K.V. Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology. 1966; 16(3): 381-90.

14. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-7. https://doi.org/10.1080/14653240600855905

15. Kuznetsov S.A., Mankani M.H., Gronthos S., Satomura K., Bianco P., Robey P.G. Circulating Skeletal Stem Cells. Journal of Cell Biology. 2001; 153(5): 1133 1140. https://doi.org/10.1083/jcb.153.5.1133

16. Williams J.T., Southerland S.S., Souza J., Calcutt A.F., Cartledge R.G. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. The American Surgeon. 1999; 65(1): 22-6.

17. De Bari C., Dell’Accio F., Tylzanowski P., Luyten F.P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatism. 2001; 44(8): 1928-42.

18. Tsai M.S., Lee J.L., Chang Y.J., Hwang S.M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two stage culture protocol. Human Reproduction. 2004; 19(6): 1450-6. https://doi.org/10.1093/humrep/deh279

19. Fukuchi Y., Nakajima H., Sugiyama D., Hirose I., Kitamura T., Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004; 22(5): 649-58. https://doi.org/10.1634/stemcells.22-5-649

20. Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Engineering. 2001; 7(2): 211-228. https://doi.org/10.1089/107632701300062859

21. Stolzing A., Jones E., McGonagle D., Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of Ageing and Development. 2008; 129(3): 163-73. https://doi.org/10.1016/j.mad.2007.12.002

22. Kostromina E., Eremin P., Kondratev D., Veremeev A., Gilmutdinova I. Characterisation of the cell product obtained with the «ESVIEF System» kit for isolation of stromal vascular fraction from human adipose tissue. Proceedings of the 7th International Conference on Bioinformatics Research and Applications (ICBRA 2020). Association for Computing Machinery. New York. USA. 2020: 66-69. https://doi.org/10.1145/3440067.3440079

23. Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell. 2002; 13(12): 4279-95. https://doi.org/10.1091/mbc.e02-02-0105

24. Senesi L., De Francesco F., Farinelli L., Manzotti S., Gagliardi G., Papalia G.F., Riccio M., Gigante A. Mechanical and Enzymatic Procedures to Isolate the Stromal Vascular Fraction from Adipose Tissue: Preliminary Results. Frontiers in Cell and Developmental Biology. 2019; (7): 88 p. https://doi.org/10.3389/fcell.2019.00088

25. Andia I., Maffulli N., Burgos-Alonso N. Stromal vascular fraction technologies and clinical applications. Expert Opinion on Biological Therapy. 2019; 19(12): 1289-1305. https://doi.org/10.1080/14712598.2019.1671970

26. Bora P., Majumdar A.S. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Research and Therapy. 2017; 8(1): 145 p. https://doi.org/10.1186/s13287-017-0598-y

27. Gil'mutdinova I.R., Kostromina E.Yu., Veremeev A.V., Putova M.V., Markov P.A., Kudryashova I.S., Eremin P.S. Sravnitel'naya harakteristika kletochnyh produktov, poluchennyh iz zhirovoy tkani pri pomoschi dvuh raznyh sistem dlya vydeleniya kletochnyh frakciy. Geny & Kletki. 2021; 16(3): 80-85.

28. Pavlov V.N., Kazihinurov A.A., Kazihinurov R.A., Agaverdiev M.A., Gareev I.F., Beylerli O.A., Mazorov B.Z. Stromal'no-vaskulyarnaya frakciya: biologiya i potencial'noe primenenie. Kreativnaya hirurgiya i onkologiya. 2021; 11(1): 92-99. https://doi.org/10.24060/2076-3093-2021-11-1-92-99

29. Maacha S., Sidahmed H., Jacob S., Gentilcore G., Calzone R., Grivel J.C., Cugno C. Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells International. 2020; (2020): 4356359 p. https://doi.org/10.1155/2020/4356359

30. Zaman W.S., Makpol S., Sathapan S., Chua K.H. Long-term in vitro expansion of human adipose-derived stem cells showed low risk of tumourigenicity. Journal of Tissue Engineering and Regenerative Medicine. 2014; 8(1): 67-76. https://doi.org/10.1002/term.1501

31. Pan Q., Fouraschen S.M., de Ruiter P.E., Dinjens W.N., Kwekkeboom J., Tilanus H.W., van der Laan L.J. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Experimental Biology and Medicine. 2014; 239(1): 105-115. https://doi.org/10.1177/1535370213506802

32. Volodina Yu.L., Puzyreva G.A., Konchugova T.V., Il'inskaya G.V. Mehanizmy biologicheskogo deystviya i perspektivy primeneniya nizkointensivnogo lazernogo izlucheniya v medicine. Sistemnyy analiz i upravlenie v biomedicinskih sistemah. 2017; 16(4): 767-75.

33. Zhang R., Zhou T., Liu L., Ohulchanskyy T.Y., Qu J. Dose-effect relationships for PBM in the treatment of Alzheimer’s disease. Journal of Physics D: Applied Physics. 2021; 54(35): 353001 p. https://doi.org/10.1088/1361-6463/ac0740

34. Hamblin M.R., Huang Y.Y., Handbook of Photomedicine. Handbook of Photomedicine. 2013. https://doi.org/10.1201/b15582

35. Gao X., Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. Journal of Biomedical Science. 2009; 16(1): 4-4. https://doi.org/10.1186/1423-0127-16-4

36. Chung H., Dai T., Sharma S.K., Huang Y.Y., Carroll J.D., Hamblin M.R. The nuts and bolts of low-level laser (light) therapy. Annals of Biomedical Engineering. 2012; 40(2): 516-533. https://doi.org/10.1007/s10439-011-0454-7

37. Tuchin V.V., Lazery i volokonnaya optika v biomedicinskih issledovaniyah. 2010: 488 c.

38. Dompe C., Moncrieff L., Matys J., Grzech-Leśniak K., Kocherova I., Bryja A., Bruska M., Dominiak M., Mozdziak P., Skiba T.H.I., Shibli J.A., Angelova Volponi A., Kempisty B., Dyszkiewicz-Konwińska M. Photobiomodulation-Underlying Mechanism and Clinical Applications. Journal of Clinical Medicine. 2020; 9(6): 1724. https://doi.org/10.3390/jcm9061724

39. de Andrade A.L.M., Luna G.F., Brassolatti P., Leite M.N., Parisi J.R., de Oliveira Leal Â.M., Frade M.A.C., de Freitas Anibal F., Parizotto N.A. Photobiom odulation effect on the proliferation of adipose tissue mesenchymal stem cells. Revista do Colégio Brasileiro de Cirurgiões. 2014; 41(2): 129-133.

40. Baldari S., Di Rocco G., Piccoli M., Pozzobon M., Muraca M., Toietta G. Challenges and Strategies for Improving the Regenerative Effects of Mesenchymal Stromal Cell-Based Therapies. International Journal of Molecular Sciences. 2017; 18(10). https://doi.org/10.3390/ijms18102087

41. Wang Y., Huang Y.Y., Wang Y., Lyu P., Hamblin M.R. Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells. Scientific Reports. 2017; 7(1): 7781 p. https://doi.org/10.1038/s41598-017-07525-w

42. Ahrabi B., Rezaei Tavirani M., Khoramgah M.S., Noroozian M., Darabi S., Khoshsirat S., Abbaszadeh H.A. The Effect of Photobiomodulation Therapy on the Differentiation, Proliferation, and Migration of the Mesenchymal Stem Cell: A Review. Journal of Lasers in Medical Sciences. 2019; 10(1): S96- S103. https://doi.org/10.15171/jlms.2019.S17

43. Han B., Fan J., Liu L., Tian J., Gan C., Yang Z., Jiao H., Zhang T., Liu Z., Zhang H. Adipose-derived mesenchymal stem cells treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1 expression enhanced by photobiomodulation therapy. Lasers in Medical Science. 2019; 34(1): 1-10. https://doi.org/10.1007/s10103-018-2567-9

44. Fallahnezhad S., Piryaei A., Darbandi H., Amini A., Ghoreishi S.K., Jalalifirouzkouhi R., Bayat M. Effect of low-level laser therapy and oxytocin on osteoporotic bone marrow-derived mesenchymal stem cells. Journal of Cellular Biochemistr. 2018; 119(1): 983-997. https://doi.org/10.1002/jcb.26265

45. Mvula B., Abrahamse H. Differentiation Potential of Adipose-Derived Stem Cells When Cocultured with Smooth Muscle Cells, and the Role of Low- Intensity Laser Irradiation. Photobiomodulation, Photomedicine, and Laser Surgery. 2016; 34(11): 509-515. https://doi.org/10.1089/pho.2015.3978

46. Zare F., Moradi A., Fallahnezhad S., Ghoreishi S.K., Amini A., Chien S., Bayat M. Photobiomodulation with 630 plus 810 nm wavelengths induce more in vitro cell viability of human adipose stem cells than human bone marrow-derived stem cells. Journal of Photochemistry and Photobiology B: Biology. 2019; (201): 111658 p. https://doi.org/10.1016/j.jphotobiol.2019.111658

47. Mvula B., Mathope T., Moore T., Abrahamse H. The effect of low-level laser irradiation on adult human adipose derived stem cells. Lasers in Medical Science. 2008; 23(3): 277-282. https://doi.org/10.1007/s10103-007-0479-1

48. Mvula B., Moore T.J., Abrahamse H. Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers in Medical Science. 2010; 25(1): 33-9. https://doi.org/10.1007/s10103-008-0636-1

49. de Villiers J.A., Houreld N.N., Abrahamse H. Influence of low intensity laser irradiation on isolated human adipose derived stem cells over 72 hours and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Reviews and Reports. 2011; 7(4): 869-82. https://doi.org/10.1007/s12015-011-9244-8

50. de Andrade A.L.M., Luna G.F., Brassolatti P., Leite M.N., Parisi J.R., de Oliveira Leal  M., Frade M.A.C., de Freitas Anibal F., Parizotto N.A. Ph otobiomodulation effect on the proliferation of adipose tissue mesenchymal stem cells. Lasers in Medical Science. 2019; 34(4): 677-683. https://doi.org/10.1007/s10103-018-2642-2

51. Yin K., Zhu R., Wang S., Zhao R.C. Low-Level Laser Effect on Proliferation, Migration, and Antiapoptosis of Mesenchymal Stem Cells. Stem Cells and Development. 2017; 26(10): 762-775. https://doi.org/10.1089/scd.2016.0332

Login or Create
* Forgot password?