EFFICACY OF A COMPREHENSIVE REHABILITATION PROGRAM INCLUDING INTERACTIVE BALANCE THERAPY WITH BIOFEEDBACK AND HYDROKINESITHERAPY IN REDUCING BODY WEIGHT AND CHANGING OF THE BODY COMPOSITION IN PATIENTS WITH OBESITY
Abstract and keywords
Abstract (English):
The problem of overweight (obesity) is steadily increasing. Aim. To evaluate the effectiveness of a new comprehensive rehabilitation program on the dynamics of weight and body composition indicators using different methods after the rehabilitation stage and long-term results. Material and methods. Men and women aged 40 to 65 years with a body mass index ≥ 30 kg/m2 were included in the study. The patients were further divided into two groups by simple randomisation. Both groups underwent two weeks of medical rehabilitation on a low-calorie diet. The patients of the main group (group 1) received 4 methods of therapeutic physical exercises. Patients in the comparison group (group 2) were treated only with aerobic exercise and therapeutic gymnastics. A dynamic observation was carried out immediately after the course, after 3 and 6 months. Results and discussion. According to the data obtained, there was a significant reduction in body weight in both groups after completion of the treatment phase, p=0.0001. There was a significant reduction in abdominal fat thickness after 14 days, 3 and 6 months in the main group (from 67.5[50.0;77.5] to 56.0[50.0;68.0] to 46.0[37.0;50.0] to 50.0[38.0;70.0] mm respectively). We obtained a significant (p<0.05) decrease in fat mass according to bioimpedanceometry in the main group after 14 days and 3 months, respectively (from 65.7[49.2;72.1] to 60.9[42.2;66.7] to 55.3[39.3;62.2] kg, respectively). In group 1 the reduction in adipose tissue by air-substituted body plethysmography was also significantly (p<0.05) different after 14 days, 3 months respectively (from 56.8[41.3;77.5] to 49.7[40.1;57.1] to 44.4[34.4;64.4] kg). Body composition analysis data over time confirm the effectiveness of comprehensive programs in weight loss. Conclusion. A new comprehensive program including aerobic and strength training, kinesohydrotherapy and balance therapy combined with a low-calorie diet showed more significant effects on weight loss, reduction in the thickness of fatty folds and changes in body composition, including at long-term follow-up, than the standard method of rehabilitation.

Keywords:
obesity, kinesohydrotherapy, body composition, rehabilitation, bioimpedanceometry, air-substituted body plethysmography, fat-fold thickness
Text
Text (PDF): Read Download
References

1. Charitos I.A., Ballini A., Cantore S., Boccellino M., Di Domenico M., Borsani E., Nocini R., Di Cosola M., Santacroce L., Bottalico L. Stem Cells: A Historical Review about Biological, Religious, and Ethical Issues. Stem Cells International. 2021; (2021): 9978837 p. https://doi.org/10.1155/2021/9978837

2. Hassanshahi A., Hassanshahi M., Khabbazi S., Hosseini-Khah Z., Peymanfar Y., Ghalamkari S., Su Y.W., Xian C.J. Adipose-derived stem cells for wound healing. Journal of Cellular Physiology. 2019; 234(6): 7903-7914. https://doi.org/10.1002/jcp.27922

3. Pak J., Lee J.H., Park K.S., Park M., Kang L.W., Lee S.H. Current use of autologous adipose tissue-derived stromal vascular fraction cells for orthopedic applications. Journal of Biomedical Science. 2017; 24(1): 9 p. https://doi.org/10.1186/s12929-017-0318-z

4. Kuo Y.R., Wang C.T., Cheng J.T., Kao G.S., Chiang Y.C., Wang C.J. Adipose-Derived Stem Cells Accelerate Diabetic Wound Healing Through the Induction of Autocrine and Paracrine Effects. Cell Transplantation. 2016; 25(1): 71-81. https://doi.org/10.3727/096368915x687921

5. Gatiatulina E.R., Manturova N.E., Dimov G.P., Vasil'ev V.S., Teryushkova Zh.I. Stromal'no-vaskulyarnaya frakciya zhirovoy tkani: mehanizm deystviya, perspektivy i riski mestnogo primeneniya. Plasticheskaya hirurgiya i esteticheskaya medicina. 2019; (2): 43-48. https://doi.org/10.17116/plast.hirurgia201902143

6. Zhao X., Guo J., Zhang F., Zhang J., Liu D., Hu W., Yin H., Jin L. Therapeutic application of adipose-derived stromal vascular fraction in diabetic foot. Stem Cell Research and Therapy. 2020; 11(1): 394. https://doi.org/10.1186/s13287-020-01825-1

7. Eremin P.S., Pigaleva N.A., Murzabekov M.B., Lebedev V.G., Lazareva N.L., Eremin I.I., Pulin A.A., Osipov A.N., Bushmanov A.Yu., Kotenko K.V. Issledovanie effektivnosti primeneniya autologichnyh kletochnyh produktov na osnove zhirovoy tkani dlya terapii tyazhelyh mestnyh luchevyh povrezhdeniy. Saratovskiy nauchno-medicinskiy zhurnal. 2014; 10(4): 838-844.

8. Lebedev V.G., Deshevoy Yu.B., Temnov A.A., Astrelina T.A., Rogov K.A., Nasonova T.A., Lyrschikova A.V., Dobrynina O.A., Sklifas A.N., Mhitarov V.A., Trofimenko A.V., Moroz B.B. Izuchenie effektov stromal'no-vaskulyarnoy frakcii, kul'tivirovannyh stvolovyh kletok zhirovoy tkani i parakrinnyh faktorov kondicionnoy sredy pri terapii tyazhelyh luchevyh porazheniy kozhi u krys. Patologicheskaya fiziologiya i eksperimental'naya terapiya. 2019; 63(1): 24-32. https://doi.org/10.25557/0031-2991.2019.01.24-32

9. Heeschen C., Lehmann R., Honold J., Assmus B., Aicher A., Walter D.H., Martin H., Zeiher A.M., Dimmeler S. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004; 109(13): 1615-22. https://doi.org/10.1161/01.cir.0000124476.32871.e3

10. Hu C., Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. Journal of Cellular and Molecular Medicine. 2018; 22(3): 1428-1442. https://doi.org/10.1111/jcmm.13492

11. AlGhamdi K.M., Kumar A., Moussa N.A. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers in Medical Science. 2012; 27(1): 237-49. https://doi.org/10.1007/s10103-011-0885-2

12. Poddubnaya O.A. Nizkointensivnaya lazeroterapiya v klinicheskoy praktike (Chast' 1). Vestnik vosstanovitel'noy mediciny. 2020; 6(100): 92-99. https://doi.org/10.38025/2078-1962-2020-100-6-92-99 

13. Friedenstein A.J., Piatetzky S., Petrakova K.V. Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology. 1966; 16(3): 381-90.

14. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-7. https://doi.org/10.1080/14653240600855905

15. Kuznetsov S.A., Mankani M.H., Gronthos S., Satomura K., Bianco P., Robey P.G. Circulating Skeletal Stem Cells. Journal of Cell Biology. 2001; 153(5): 1133 1140. https://doi.org/10.1083/jcb.153.5.1133

16. Williams J.T., Southerland S.S., Souza J., Calcutt A.F., Cartledge R.G. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. The American Surgeon. 1999; 65(1): 22-6.

17. De Bari C., Dell’Accio F., Tylzanowski P., Luyten F.P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatism. 2001; 44(8): 1928-42.

18. Tsai M.S., Lee J.L., Chang Y.J., Hwang S.M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two stage culture protocol. Human Reproduction. 2004; 19(6): 1450-6. https://doi.org/10.1093/humrep/deh279

19. Fukuchi Y., Nakajima H., Sugiyama D., Hirose I., Kitamura T., Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004; 22(5): 649-58. https://doi.org/10.1634/stemcells.22-5-649

20. Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Engineering. 2001; 7(2): 211-228. https://doi.org/10.1089/107632701300062859

21. Stolzing A., Jones E., McGonagle D., Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of Ageing and Development. 2008; 129(3): 163-73. https://doi.org/10.1016/j.mad.2007.12.002

22. Kostromina E., Eremin P., Kondratev D., Veremeev A., Gilmutdinova I. Characterisation of the cell product obtained with the «ESVIEF System» kit for isolation of stromal vascular fraction from human adipose tissue. Proceedings of the 7th International Conference on Bioinformatics Research and Applications (ICBRA 2020). Association for Computing Machinery. New York. USA. 2020: 66-69. https://doi.org/10.1145/3440067.3440079

23. Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell. 2002; 13(12): 4279-95. https://doi.org/10.1091/mbc.e02-02-0105

24. Senesi L., De Francesco F., Farinelli L., Manzotti S., Gagliardi G., Papalia G.F., Riccio M., Gigante A. Mechanical and Enzymatic Procedures to Isolate the Stromal Vascular Fraction from Adipose Tissue: Preliminary Results. Frontiers in Cell and Developmental Biology. 2019; (7): 88 p. https://doi.org/10.3389/fcell.2019.00088

25. Andia I., Maffulli N., Burgos-Alonso N. Stromal vascular fraction technologies and clinical applications. Expert Opinion on Biological Therapy. 2019; 19(12): 1289-1305. https://doi.org/10.1080/14712598.2019.1671970

26. Bora P., Majumdar A.S. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Research and Therapy. 2017; 8(1): 145 p. https://doi.org/10.1186/s13287-017-0598-y

27. Gil'mutdinova I.R., Kostromina E.Yu., Veremeev A.V., Putova M.V., Markov P.A., Kudryashova I.S., Eremin P.S. Sravnitel'naya harakteristika kletochnyh produktov, poluchennyh iz zhirovoy tkani pri pomoschi dvuh raznyh sistem dlya vydeleniya kletochnyh frakciy. Geny & Kletki. 2021; 16(3): 80-85.

28. Pavlov V.N., Kazihinurov A.A., Kazihinurov R.A., Agaverdiev M.A., Gareev I.F., Beylerli O.A., Mazorov B.Z. Stromal'no-vaskulyarnaya frakciya: biologiya i potencial'noe primenenie. Kreativnaya hirurgiya i onkologiya. 2021; 11(1): 92-99. https://doi.org/10.24060/2076-3093-2021-11-1-92-99

29. Maacha S., Sidahmed H., Jacob S., Gentilcore G., Calzone R., Grivel J.C., Cugno C. Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells International. 2020; (2020): 4356359 p. https://doi.org/10.1155/2020/4356359

30. Zaman W.S., Makpol S., Sathapan S., Chua K.H. Long-term in vitro expansion of human adipose-derived stem cells showed low risk of tumourigenicity. Journal of Tissue Engineering and Regenerative Medicine. 2014; 8(1): 67-76. https://doi.org/10.1002/term.1501

31. Pan Q., Fouraschen S.M., de Ruiter P.E., Dinjens W.N., Kwekkeboom J., Tilanus H.W., van der Laan L.J. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Experimental Biology and Medicine. 2014; 239(1): 105-115. https://doi.org/10.1177/1535370213506802

32. Volodina Yu.L., Puzyreva G.A., Konchugova T.V., Il'inskaya G.V. Mehanizmy biologicheskogo deystviya i perspektivy primeneniya nizkointensivnogo lazernogo izlucheniya v medicine. Sistemnyy analiz i upravlenie v biomedicinskih sistemah. 2017; 16(4): 767-75.

33. Zhang R., Zhou T., Liu L., Ohulchanskyy T.Y., Qu J. Dose-effect relationships for PBM in the treatment of Alzheimer’s disease. Journal of Physics D: Applied Physics. 2021; 54(35): 353001 p. https://doi.org/10.1088/1361-6463/ac0740

34. Hamblin M.R., Huang Y.Y., Handbook of Photomedicine. Handbook of Photomedicine. 2013. https://doi.org/10.1201/b15582

35. Gao X., Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. Journal of Biomedical Science. 2009; 16(1): 4-4. https://doi.org/10.1186/1423-0127-16-4

36. Chung H., Dai T., Sharma S.K., Huang Y.Y., Carroll J.D., Hamblin M.R. The nuts and bolts of low-level laser (light) therapy. Annals of Biomedical Engineering. 2012; 40(2): 516-533. https://doi.org/10.1007/s10439-011-0454-7

37. Tuchin V.V., Lazery i volokonnaya optika v biomedicinskih issledovaniyah. 2010: 488 c.

38. Dompe C., Moncrieff L., Matys J., Grzech-Leśniak K., Kocherova I., Bryja A., Bruska M., Dominiak M., Mozdziak P., Skiba T.H.I., Shibli J.A., Angelova Volponi A., Kempisty B., Dyszkiewicz-Konwińska M. Photobiomodulation-Underlying Mechanism and Clinical Applications. Journal of Clinical Medicine. 2020; 9(6): 1724. https://doi.org/10.3390/jcm9061724

39. de Andrade A.L.M., Luna G.F., Brassolatti P., Leite M.N., Parisi J.R., de Oliveira Leal Â.M., Frade M.A.C., de Freitas Anibal F., Parizotto N.A. Photobiom odulation effect on the proliferation of adipose tissue mesenchymal stem cells. Revista do Colégio Brasileiro de Cirurgiões. 2014; 41(2): 129-133.

40. Baldari S., Di Rocco G., Piccoli M., Pozzobon M., Muraca M., Toietta G. Challenges and Strategies for Improving the Regenerative Effects of Mesenchymal Stromal Cell-Based Therapies. International Journal of Molecular Sciences. 2017; 18(10). https://doi.org/10.3390/ijms18102087

41. Wang Y., Huang Y.Y., Wang Y., Lyu P., Hamblin M.R. Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells. Scientific Reports. 2017; 7(1): 7781 p. https://doi.org/10.1038/s41598-017-07525-w

42. Ahrabi B., Rezaei Tavirani M., Khoramgah M.S., Noroozian M., Darabi S., Khoshsirat S., Abbaszadeh H.A. The Effect of Photobiomodulation Therapy on the Differentiation, Proliferation, and Migration of the Mesenchymal Stem Cell: A Review. Journal of Lasers in Medical Sciences. 2019; 10(1): S96- S103. https://doi.org/10.15171/jlms.2019.S17

43. Han B., Fan J., Liu L., Tian J., Gan C., Yang Z., Jiao H., Zhang T., Liu Z., Zhang H. Adipose-derived mesenchymal stem cells treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1 expression enhanced by photobiomodulation therapy. Lasers in Medical Science. 2019; 34(1): 1-10. https://doi.org/10.1007/s10103-018-2567-9

44. Fallahnezhad S., Piryaei A., Darbandi H., Amini A., Ghoreishi S.K., Jalalifirouzkouhi R., Bayat M. Effect of low-level laser therapy and oxytocin on osteoporotic bone marrow-derived mesenchymal stem cells. Journal of Cellular Biochemistr. 2018; 119(1): 983-997. https://doi.org/10.1002/jcb.26265

45. Mvula B., Abrahamse H. Differentiation Potential of Adipose-Derived Stem Cells When Cocultured with Smooth Muscle Cells, and the Role of Low- Intensity Laser Irradiation. Photobiomodulation, Photomedicine, and Laser Surgery. 2016; 34(11): 509-515. https://doi.org/10.1089/pho.2015.3978

46. Zare F., Moradi A., Fallahnezhad S., Ghoreishi S.K., Amini A., Chien S., Bayat M. Photobiomodulation with 630 plus 810 nm wavelengths induce more in vitro cell viability of human adipose stem cells than human bone marrow-derived stem cells. Journal of Photochemistry and Photobiology B: Biology. 2019; (201): 111658 p. https://doi.org/10.1016/j.jphotobiol.2019.111658

47. Mvula B., Mathope T., Moore T., Abrahamse H. The effect of low-level laser irradiation on adult human adipose derived stem cells. Lasers in Medical Science. 2008; 23(3): 277-282. https://doi.org/10.1007/s10103-007-0479-1

48. Mvula B., Moore T.J., Abrahamse H. Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers in Medical Science. 2010; 25(1): 33-9. https://doi.org/10.1007/s10103-008-0636-1

49. de Villiers J.A., Houreld N.N., Abrahamse H. Influence of low intensity laser irradiation on isolated human adipose derived stem cells over 72 hours and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Reviews and Reports. 2011; 7(4): 869-82. https://doi.org/10.1007/s12015-011-9244-8

50. de Andrade A.L.M., Luna G.F., Brassolatti P., Leite M.N., Parisi J.R., de Oliveira Leal  M., Frade M.A.C., de Freitas Anibal F., Parizotto N.A. Ph otobiomodulation effect on the proliferation of adipose tissue mesenchymal stem cells. Lasers in Medical Science. 2019; 34(4): 677-683. https://doi.org/10.1007/s10103-018-2642-2

51. Yin K., Zhu R., Wang S., Zhao R.C. Low-Level Laser Effect on Proliferation, Migration, and Antiapoptosis of Mesenchymal Stem Cells. Stem Cells and Development. 2017; 26(10): 762-775. https://doi.org/10.1089/scd.2016.0332

52. Després J.P., Poirier P., Bergeron J., Tremblay A., Lemieux I., Alméras N. From individual risk factors and the metabolic syndrome to global cardiometabolic risk. European Heart Journal. 2008; 10(B): 24-33. https://doi.org/10.1093/eurheartj/sum041

53. WHO. Obesity and Overweight. Geneva, Switzeriand. 2016.

54. Zatoloka N.V., Bulgak A.G., Tarasyuk E.S. Metod diagnostiki sindroma obstruktivnogo apnoe sna u pacientov s ishemicheskoy bolezn'yu serdca i metabolicheskim sindromom. Evraziyskiy kardiologicheskiy zhurnal. 2016; (3): 200 c.

55. Mannix E.T., Dempsey J.M., Engel R.J., Schneider B., Busk M.F. The Role of Physical Activity, Exercise, and Nutrition in the Treatment of Obesity. The Management of Eating Disorders and Obesity. Nutrition and Health. 2010: 155-172. https://doi.org/10.1007/978-1-59259-694-2_13

56. Dam T.T., Peters K.W., Fragala M, Cawthon P.M., Harris T.B., McLean R., Shardell M., Alley D.E., Kenny A., Ferrucci L., Guralnik J., Kiel D.P., Kritchevsky S., Vassileva M.T., Studenski S.J. An Evidence-Based Comparison of Operational Criteria for the Presence of Sarcopenia. The Journals of Gerontology: Series A. 2014; 69(5): 584-90. https://doi.org/10.1093/gerona/glu013

57. Misnikova I.V., Kovaleva Yu.A., Klimina N.A. Sarkopenicheskoe ozhirenie. Rossiyskiy medicinskiy zhurnal. 2017; 1(25): 24-29.

58. Marchenkova L.A., Vasil'eva V.A. Dvigatel'nye i koordinacionnye narusheniya u pacientov s ozhireniem i metabolicheskim sindromom i vozmozhnosti ih korrekcii. Lechaschiy vrach. 2019; (4): 68 c.

59. Ding J., Kritchevsky S.B., Newman A. et al. Effects of birth cohortand age on body composition in a sample of community-based elderly. The American Journal of Clinical Nutrition. 2007; 85(2): 405-410. https://doi.org/10.1093/ajcn/85.2.405

60. Beaufrere B., Morio B. Fat and protein redistribution with aging: metabolic considerations. European Journal of Clinical Nutrition. 2000; 54(3): S48- S53. https://doi.org/10.1038/sj.ejcn.1601025

61. Lee O., Lee D.S., Lee S. Associations between Physical Activity and Obesity Defined by waist - to-height ratio and body mass index in the Korean Population. PLOS One. 2016; 11(7): 1-1125. https://doi.org/10.1371/journal.pone.0158245

62. Cruz-Jentoft A.J., Bahat G., Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing. 2018; (0): 1-16. https://doi.org/10.1093/ageing/afy169

63. Waters D.L., Baumgartner R.N. Sarcopenia and Obesity. Clinics in Geriatric Medicine. 2011; 27(3): 401-421. https://doi.org/10.1016/j.cger.2011.03.007

64. Prado C.M., Wells J.C., Smith S.R. et al. Sarcopenic Obesity: A Critical Appraisal of the Current Evidence. Clinical Nutrition. 2012: 31(5): 583-601. https://doi.org/10.1016/j.clnu.2012.06.010

65. Lee S.Y., Gallagher D. Assessment methods in human body composition. Current Opinion in Clinical Nutrition and Metabolic Care. 2008; (11): 566- 572. https://doi.org/10.1097/MCO.0b013e32830b5f23

66. Kacmarek R.M., Wanderley H.V., Villar J., Berra L. Weaning patients with obesity from ventilatory support. Current Opinion in Critical Care. 2021; 27(3): 311-319. https://doi.org/10.1097/MCC.0000000000000823

67. Roberts H.C., Denison H.J., Martin H.J. et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011; (40): 423-9. https://doi.org/10.1093/ageing/afr051

68. Valeriia Vasileva, Larisa Marchenkova. Comparative effectiveness of three methods for body composition assessment in the verification of manifestations of sarcopenia in obese patients. Bone Reports. 2020; (13): 173 p. https://doi.org/10.1016/j.bonr.2020.100494

69. Kavitha Bhat Schelbert. Comorbidities of Obesity. Primar y Care: Clinics in Office Practice. 2009; 36(2): 271-285. https://doi.org/10.1016/j.pop.2009.01.009

70. Beaudart C., McCloskey E., Bruyere O. et al. Sarcopenia in daily practice: assessment and management. BMC Geriatrics. 2016; (16): 170 p. https://doi.org/10.1186/s12877-016-0349-4

71. Grzegorz Bielec, Anna Gozdziejewska, , Piotr Makar. Changes in Body Composition and Anthropomorphic Measurements in Children Participating in Swimming and Non-Swimming Activities. Children. 2021; 8(7): 529 p. https://doi.org/10.3390/children8070529

72. Angela A.M. Carvalho, Francyelle B.R.D.E. Moura, Pedro Augusto S. Nogueira, Aline Maria N. Gonçalves, Fernanda A. Araújo, Renata G. Zanon, Tatiana Carla Tomiosso. Swimming exercise changed the collagen synthesis and calcification in calcaneal tendons of mice. Anais da Academia Brasileira de Ciencias. 2020; 92(1): e20181127 p. https://doi.org/10.1590/0001-3765202020181127

73. Dana Guglielmo, Kristina A. Theis, Louise B. Murphy, Michael A. Boring, Charles G. Helmick, John D. Omura, Erica L. Odom, Lindsey M. Duca, Janet B. Croft. physical activity types and programs recommended by primary care providers treating adults with Arthritis. DocStyles 2018. Preventing Chronic Disease. 2021; (18): 210194 p. https://doi.org/10.5888/pcd18.210194

74. Fjeldstad C., Fjeldstad A.S., Acree L.S., Nickel K.J., Gardner A.W. The influence of obesity on falls and quality of life. Dynamic Medicine. 2008; (7): 6 p. https://doi.org/10.1186/1476-5918-7-4

Login or Create
* Forgot password?