The concentration of catecholamines, having positive inotropic and chronotropic effects on heart function, increases under the action of strong stimuli. This mechanism of influence is very important in terms of the development of both coronary and non-coronary myocardial damage. However, further studies have revealed an important role of catecholamines in the regulation of hemostasis processes, which is very relevant in patients with coronary heart disease, as it increases the risk of myocardial infarction. Aim. Based on the literature data, to study the role of catecholamines in the regulation of the hemostasis system as a risk factor for complications in coronary heart disease. Material and methods. We analyzed literature sources in the computer databases «Cyberlennica», «PubMed», «eLibrary» using the search words: «catecholamines – hemostasis», «catecholamines – platelets», «catecholamines – leukocytes», «coronary heart disease – catecholamines», «coronary heart disease – hemostasis», «coronary heart disease – platelets». The analyzed literature describes the results of original studies that characterize the multifactorial influence of catecholamines on the hemostasis system in the coronary heart disease: the effects of these hormones as an important activator of the platelet hemostasis, the role of platelets in activating the coagulation component of hemostasis and its specific features, the importance of leukocytes, erythrocytes, endothelium, changes in the lipid profile in disorders of the blood coagulation process. Therefore, regular monitoring of its condition, timely pharmacological correction is necessary to ensure effective relapse prevention and reduce the risk of complications and fatal outcome. Conclusion. Regular monitoring of the hemostasis system and timely pharmacological correction are necessary to ensure effective relapse prevention and reduce the risk of complications and fatal outcome in patients with coronary heart disease.
catecholamines, coronary heart disease, myocardial infarction, angina pectoris, platelets, coagulation hemostasis, endothelial dysfunction
1. Safaryan A.S., Sargsyan V.D. Gipersimpatikotoniya v patogeneze arterial'noy gipertonii i metody ee korrekcii. Chast' I. Kardiovaskulyarnaya terapiya i profilaktika. 2020; 19(6): 57-66. https://doi.org/10.15829/1728-8800-2020-2693
2. Mustonen P., Lassila R. Epinephrine augments platelet recruitment to immobilized collagen in flowing blood-evidence for a von Willebrand factormediated mechanism. Thrombosis and Heamostasis. 1996; 75(1): 175-181. https://doi.org/10.1055/s-0038-1650239
3. Goncharov M.D., Grinshteyn Yu.I., Savchenko A.A., Kosinova A.A. Molekulyarno-metabolicheskie osobennosti izmeneniya chuvstvitel'nosti trombocitov k antitrombocitarnoy terapii u bol'nyh s ishemicheskoy bolezn'yu serdca do i posle koronarnogo shuntirovaniya. Rossiyskiy kardiologicheskiy zhurnal. 2021; 26(6): 24-32. https://doi.org/10.15829/1560-4071-2021-4442
4. Balabin F.A., Morozova D.S., Mayorov A.S., Mart'yanov A.A., Panteleev M.A., Sveshnikova A.N. Klasterizaciya receptorov k inozitoltrifosfatu opredelyaet formu pika oscillyaciy kal'ciya v citozole trombocita. Vestnik Moskovskogo universiteta. Seriya 3: Fizika. Astronomiya. 2018; (5): 62-69.
5. Nakamura T., Ariyoshi H., Kambayashi J., Ikeda M., Kawasaki T., Sakon M., Monden M. Effect of low concentration of epinephrine on human platelet aggregation analyzed by particle counting method and confocal microscopy. The Journal of Laboratory and Clinical Medicine. 1997; 130(3): 262- 270. https://doi.org/10.1016/S0022-2143(97)90020-2
6. Singh S., Malm C.J., Ramström S., Hesse C., Jeppsson A. Adrenaline enhances in vitro platelet activation and aggregation in blood samples from ticagrelor-treated patients. Research and Practice in Thrombosis and Haemostasis. 2018; 2(4): 718-725. https://doi.org/10.1002/rth2.12149
7. Shattil S.J., Budzynski A., Scrutton M.C. Epinephrine induces platelet fibrinogen receptor expression, fibrinogen binding, and aggregation in whole blood in the absence of other excitatory agonists. Blood. 1989; 73(1): 150-158. https://doi.org/10.1182/blood.V73.1.150.150
8. Haliulin A.V., Gusyakova O.A., Kozlov A.V., Gabril'chak A.I. Processy metabolizma i mehanizmy regulyacii aktivnosti trombocitov (obzor literatury). Klinicheskaya laboratornaya diagnostika. 2019; 64(3): 164-169. https://doi.org/10.18821/0869-2084-2019-64-3-164-169
9. Budnik I.A. Formirovanie kompleksa «aktin-integrin-αIIbß3-fibrinogen» v dinamike adrenalin-inducirovannoy agregacii trombocitov: rol' geterotrimernogo G-belka GαZ. Byulleten' medicinskih Internet-konferenciy. 2016; 6(11).
10. Nasirov K.E., Nadzhimova H., Musaeva M.K., Muhitdinov B. Vliyanie nekotoryh soedineniy na agregaciyu trombocitov v usloviyah in vitro. Universum: himiya i biologiya. 2020; 5(71).
11. Aksent'ev S.B., Solov'eva A.V., Yunevich D.S. Effektivnost' i bezopasnost' razlichnyh shem dvoynoy antiagregantnoy terapii u bol'nyh s infarktom miokarda na fone chreskozhnogo koronarnogo vmeshatel'stva. Rossiyskiy kardiologicheskiy zhurnal. 2021; 26(7): 102-108. https://doi.org/10.15829/1560-4071-2021-4525
12. Porushnichak D.E., Porushnichak E.B., Kuznik B.I. Agregacionnaya aktivnost' trombocitov v arterial'noy i venoznoy krovi pri stabil'noy i nestabil'noy stenokardii. Kubanskiy nauchnyy medicinskiy vestnik. 2012; 2(131): 150-154.
13. Rao A.K., Willis J., Kowalska M.A., Wachtfogel Y.T., Colman R.W. Differential requirements for platelet aggregation and inhibition of adenylate cyclase by epinephrine. Studies of a familial platelet alpha2-adrenergic receptor defect. Blood. 1988; 71(2): 494-501. https://doi.org/10.1182/blood.V71.2.494.494
14. A., Misztal T., Marcinczyk N., Chabielska E., Rusak T. Adrenaline May Contribute to Prothrombotic Condition via Augmentation of Platelet Procoagulant Response, Enhancement of Fibrin Formation, and Attenuation of Fibrinolysis. Frontiers in Physiology. 2021; (12): 657881 p. https://doi.org/10.3389/fphys.2021.657881
15. Weisel J.W. Structure of fibrin: impact on clot stability. Journal of Thrombosis and Heamostasis. 2007; 5(1): 116-124. https://doi.org/10.1111/j.1538-7836.2007.02504.x
16. Tutwiler V., Peshkova A.D., Minh G.L., Zaitsev S., Litvinov R.I., Cines D.B., Weisel J.W. Blood clot contraction differentially modulates internal and external fibrinolysis. Journal of Thrombosis and Heamostasis. 2019; 17(2): 361-370. https://doi.org/10.1111/jth.14370
17. Chandler W.L., Veith R.C., Fellingham G.W., Levy W.C., Schwartz R.S. et al. Fibrinolytic response during exercise and epinephrine infusion in the same subjects. Journal of the American College of Cardiology. 1992; 19(7): 1412-1420. https://doi.org/10.1016/0735-1097(92)90596-F
18. Sulkarnaeva G.A. Markery vzaimodeystviya trombin-fibrinogen i tolerantnost' k trombinu v svyazi s lipidperoksidaciey. Ekologiya cheloveka. 2007; (6): 3-8.
19. Känel R.V., Heimgartner N., Stutz M., Zuccarella-Hackl C., Hänsel A., Ehlert U., Wirtz P.H. Prothrombotic response to norepinephrine infusion, mimicking norepinephrine stress-reactivity effects, is partly mediated by α-adrenergic mechanisms. Psychoneuroendocrinology. 2019; (105): 44-50. https://doi.org/10.1016/j.psyneuen.2018.09.018
20. Li Q., Liao Z., Gu L., Zhang L., Zhang L., Tian X., Li J., Fang Z., Zhang X. Moderate Intensity Static Magnetic Fields Prevent Thrombus Formation in Rats and Mice. Bioelectromagnetics. 2020; 41(1): 52-62. https://doi.org/10.1002/bem.22232
21. Niemann M.J., Lund A., Lunen T.B., Zaar M., Clemmesen J.O., Plomgaard P., Nielsen H.B., Secher N.H. Role of spleen and liver for enhanced hemostatic competence following administration of adrenaline to humans. Thrombosis Research. 2019; (176): 95-100. https://doi.org/10.1016/j.thromres.2019.02.018
22. Galyautdinov G.S., Chudakova E.A. Osobennosti sistemy gemostaza u pacientov s ishemicheskoy bolezn'yu serdca. Kazanskiy medicinskiy zhurnal. 2012; 93(1): 3-7.
23. Miloradov M.Yu., Emanuylova N.V., Masina I.V., Bulaeva S.V., Zamyshlyaev A.V. Vliyanie trombocitov i processa ih agregacii na mezheritrocitarnye vzaimodeystviya. Yaroslavskiy pedagogicheskiy vestnik. 2013; 3(4): 209-214.
24. Peshkova A.D., Lozhkin A.P., Fathullina L.S., Malyasev D.V., Bredihin R.A., Litvinov R.I. Zavisimost' kontrakcii (retrakcii) sgustka ot molekulyarnogo i kletochnogo sostava krovi. Kazanskiy medicinskiy zhurnal. 2016; 97(1): 70-77.
25. Ivanova A.S., Pahrova O.A., Krishtop V.V., Lencher O.S. Vliyanie adrenalina na reologicheskie pokazateli krovi krys. Eksperimental'naya i klinicheskaya farmakologiya. 2019; 82(5): 24-27.
26. Gagarkina L.S., Carenok S.Yu., Gorbunov V.V. Leykocitarno-trombocitarnye vzaimootnosheniya u bol'nyh s hronicheskoy koronarnoy nedostatochnost'yu, podvergnutyh angioplastike so stentirovaniem. Byulleten' Vostochno-Cibirskogo nauchnogo centra Sibirskogo otdeleniya Rossiyskoy Akademii medicinskih nauk. 2010; 3(73): 43-46.
27. Karimova A., Pinsky D.J. The endothelial response to oxygen deprivation; biology and clinical implications. Intensive Care Medicine. 2001; 27(1): 19-31. https://doi.org/10.1007/s001340000790
28. Hidirova L.D. Izmenenie balansa mezhdu aktivnost'yu perekisnogo okisleniya lipidov, antioksidantnoy zaschitoy i soderzhaniem zheleza u krys pri eksperimental'nom infarkte miokarda. Racional'naya farmakoterapiya v kardiologii. 2010; 6(2): 216-219.
29. Hidirova L.D. Proyavleniya vospalitel'nogo haraktera u krys s eksperimental'nym infarktom miokarda. Journal of Siberian Medical Sciences. 2015; (1): 1- 9.
30. Vlasov T.D., Nesterovich I.I., Shiman'ski D.A. Endotelial'naya disfunkciya: ot chastnogo k obschemu. Vozvrat k «staroy paradigme?» Regionarnoe krovoobraschenie i mikrocirkulyaciya. 2019; 18(2): 19-27. https://doi.org/10.24884/1682-6655-2019-18-2-19-27
31. Ostrowski S.R., Henriksen H.H., Stensballe J., Gybel-Brask M., Cardenas J.C., Baer L.A., Cotton B.A., Holcomb J.B. Wade C.E., Johansson P.I. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: A prospective observational study of 404 severely injured patients. The Journal Trauma and Acute Care Surgery. 2017; 82(2): 293-301. https://doi.org/10.1097/TA.0000000000001304
32. Ivanova A.S., Sitnikova O.G., Popova I.G., Nazarov S.B. Koncentraciya gazovyh transmitterov pri kateholaminovom povrezhdenii miokarda u krys. Byulleten' eksperimental'noy biologii i mediciny. 2018; 165(6): 681-683.
33. Shlyk I.F. Citokinovyy profil' i sostoyanie endoteliya u pacientov s ishemicheskoy bolezn'yu serdca i razlichnym ishodom koronarnogo shuntirovaniya. Kubanskiy nauchnyy medicinskiy vestnik. 2019; 26(5): 96-104. https://doi.org/10.25207/1608-6228-2019-26-5-96-104
34. Sadikova R.I., Mutalova E.G. Vliyanie citokinovoy seti i rol' molekul mezhkletochnoy adgezii na razvitie endotelial'noy disfunkcii bol'nyh ostrym infarktom miokarda. Prakticheskaya medicina. 2018; 16(9): 92-96. https://doi.org/10.32000/2072-1757-2018-9-92-96
35. Manchurov V.N., Lebedeva A.M., Ryazankina N.B., Vasil'eva E.Yu., Shpektor A.V. Vliyanie endotelial'noy disfunkcii na techenie ostrogo infarkta miokarda s pod'emom segmenta ST i ee korrekciya s pomosch'yu otdalennogo ishemicheskogo prekondicionirovaniya. Terapevticheskiy arhiv. 2020; 92(1): 10-14. https://doi.org/10.26442/00403660.2020.01.000140
36. Golubeva E.K., Pahrova O.A., Aleksahina E.L., Tomilova I.K., Sokolova M.A., Pigolkina E.I. Morfofunkcional'nye izmeneniya trombocitov v usloviyah laktatacidoza in vitro. Sovremennye problemy nauki i obrazovaniya. 2020; (1). https://doi.org/10.17513/spno.29509
37. Moskalenko S.V., Shahmatov I.I., Bondarchuk Yu.A., Alekseeva O.V., Ulitina O.M. Reakciya sistemy gemostaza pri giperkapncheskoy gipoksii posle kursovogo primeneniya meksidola s ispol'zovaniem metoda tromboelastografii. Kazanskiy medicinskiy zhurnal. 2018; 99(6): 936- 941. https://doi.org/10.17816/KMJ2018-936
38. Al'fonsov V.V., Al'fonsova E.V., Zabrodina L.A. Vliyanie razlichnyh sdvigov rN na svertyvanie krovi, fibrinoliz i agregaciyu trombocitov v opytah in vitro. Uchenye zapiski Zabaykal'skogo gosudarstvennogo gumanitarno-pedagogicheskogo universiteta im. N.G. Chernyshev- skogo. 2010; 1(30): 5-15