Spinal cord injury produces muscle wasting, which is especially severe after the complete and permanent damage of lower motor neurons that occurs in complete Cauda Equina Syndrome. Even in this worst-case scenario, we have shown that permanently denervated Quadriceps muscle can be rescued by surface Functional Electrical Stimulation and a purpose designed home-based rehabilitation regime. Here, our aim is to show that the effects are extended to both antagonist muscles and the skin of the thighs. Before and after 2 years of electrical stimulation, mass and structure of Quadriceps and Hamstrings muscles were quantitated by force measurements. Muscle gross cross section were evaluated using color computed tomography, muscle and skin biopsies by quantitative histology and immunohistochemistry. The treatment produced: a) an increase in cross-sectional area of stimulated muscles; b) an increase in muscle fiber mean diameter; c) improvements in ultrastructural organization; and d) increased force output during electrical stimulation. The recovery of Quadriceps muscle force was sufficient to allow 25% of the compliant subjects to perform stand-up and step-in place trainings. Improvements are extended to hamstring muscles and skin. Indeed, the cushioning effect provided by recovered tissues is a major clinical benefit. It is our hope that, with or without our advice, trials may start soon in Europe and Russia to provide persons-in-need the help they deserve.
Spinal Cord Injury, denervated degenerating muscle, home Functional Electrical Stimulation, muscle co-activation, Color Computed Tomography, functional recovery, skin
1. Larsson L., Degens H., Li M., et al. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiological Reviews. 2019; 99: 427-511. DOI:https://doi.org/10.1152/physrev.00061.2017
2. Gava P., Kern H., Carraro U. Age-associated power decline from running, jumping, and throwing male masters world records. Experimental Aging Research. 2015; 41: 115-135. DOI:https://doi.org/10.1080/0361073X.2015.1001648
3. Hopkins R.O., Mitchell L., Thomsen G.E., et al. Implementing a mobility program to minimize post-intensive care syndrome. AACN Advanced Critical Care. 2016; 27: 187-203. DOI:https://doi.org/10.4037/aacnacc2016244.
4. Spillman B.C., Lubitz J. The effect of longevity on spending for acute and long-term care. The New England Journal of Medicine. 2000; 342: 1409-1415. DOI:https://doi.org/10.1056/NEJM200005113421906
5. Carraro U., Gava K., Baba A., et al. To Contrast and Reverse Skeletal Muscle Atrophy by Full-Body In-Bed Gym, a Mandatory Lifestyle for Older Olds and Borderline Mobility-Impaired Persons. Advances in Experimental Medicine and Biology. 2018; 1088: 549-560. DOI:https://doi.org/10.1007/978-981-13-1435-3_25
6. Jones S., Man W.D., Gao W., et al. Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane database of systematic reviews. 2016;10:CD009419. DOI:https://doi.org/10.1002/14651858.CD009419.pub3
7. Carraro U., Kern H., Gava P., et al. Biology of Muscle Atrophy and of its Recovery by FES in Aging and Mobility Impairments: Roots and By-Products. European Journal of Translational Myology. 2015; 25: 221-230. DOI:https://doi.org/10.4081/ejtm.2015.5272
8. Ades P.A., Keteyian S.J., Wright J.S., et al. Increasing Cardiac Rehabilitation Participation From 20% to 70%: A Road Map From the Million Hearts Cardiac Rehabilitation Collaborative. Mayo Clinic Proceedings. 2017; 92: 234-242. DOI:https://doi.org/10.1016/j.mayocp.2016.10.014
9. Vorona S., Sabatini U., Al-Maqbali S., et al. Inspiratory Muscle Rehabilitation in Critically Ill Adults: A Systematic Review and Meta-Analysis. Annals of the American Thoracic Society. 201815: 735-744. DOI:https://doi.org/10.1513/AnnalsATS.201712-961OC
10. Etoom M. Comments on: Influence of transcutaneous electrical nerve stimulation on spasticity, balance, and walking speed in stroke patients: a systematic review and meta-analysis. Journal of Rehabilitation Medicine. 2018; 50: 94. DOI:https://doi.org/10.2340/16501977-2303
11. Kiper P., Turolla A. Updates and comments on: Influence of transcutaneous electrical nerve stimulation on spasticity, balance, and walking speed in stroke patients: A systematic review and meta-analysis. Journal of Rehabilitation Medicine. 2019; 51: 317-318. DOI:https://doi.org/10.2340/16501977-2538
12. Bersch I., Tesini S, Bersch U, Frotzler A. Functional electrical stimulation in spinal cord injury: clinical evidence versus daily practice. Artificial Organs. 2015; 39: 849-854. DOI:https://doi.org/10.1111/aor.12618
13. Lin S., Sun Q., Wang H., Xie G. Influence of transcutaneous electrical nerve stimulation on spasticity, balance, and walking speed in stroke patients: a systematic review and meta-analysis. Journal of Rehabilitation Medicine. 2018; 50: 3-7. DOI:https://doi.org/10.2340/16501977-2266
14. Burgess L.C., Immins T., Swain I., Wainwright T.W. Effectiveness of neuromuscular electrical stimulation for reducing oedema: A systematic review. Journal of Rehabilitation Medicine. 2019;51:237-243. DOI:https://doi.org/10.2340/16501977-2529
15. Laubacher M., Aksoez E.A., Brust A.K., et al. Stimulation of paralysed quadriceps muscles with sequentially and spatially distributed electrodes during dynamic knee extension. Journal of NeuroEngineering and Rehabilitation. 2019;16:5. DOI:https://doi.org/10.1186/s12984-018-0471-y
16. Angeli C.A., Boakye M., Morton R.A., et al. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. The New England Journal of Medicine. 2018; 379: 1244-1250. DOI:https://doi.org/10.1056/NEJMoa1803588
17. Wagner F.B., Mignardot J.B., Le Goff-Mignardot C.G., et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature.2018; 563: 65-71. DOI:https://doi.org/10.1038/s41586-018-0649-2
18. Kern H., Carraro U., Adami N., et al. Home-based functional electrical stimulation rescues permanently denervated muscles in paraplegic patients with complete lower motor neuron lesion. Neurorehabilitation and Neural Repair. 2010; 24: 709-721. DOI:https://doi.org/10.1177/1545968310366129
19. https://www.schuhfried.com/umbraco/Surface/AuthenticationSurface/Login?return Url=%2Fportal
20. Albertin G., Hofer C., Zampieri S., et al. In complete SCI patients, long-term functional electrical stimulation of permanent denervated muscles increases epidermis thickness. Journal of Neurology Research. 2018; 40: 277-282. DOI:https://doi.org/10.1080/01616412.2018.1436877
21. Albertin G., Kern H., Hofer C., et al. Two years of Functional Electrical Stimulation by large surface electrodes for denervated muscles improve skin epidermis in SCI. European Journal of Translational Myology.2018; 28: 7373. DOI:https://doi.org/10.4081/ejtm.2018.7373
22. Albertin G., Ravara B., Kern H., et al. Two-years of home based functional electrical stimulation recovers epidermis from atrophy and flattening after years of complete Conus-Cauda Syndrome. Medicine (Baltimore). 2019; 98(52): e18509. DOI:https://doi.org/10.1097/MD.0000000000018509
23. Kern H., Hofer C., Mayr W. Protocols for clinical work package of the European Project RISE. Basic Appl Myol. European Journal of Translational Myology. 2008; 18: 39-44.
24. Edmunds K.J., Gíslason M.K., Arnadottir I.D., et al. Quantitative Computed Tomography and Image Analysis for Advanced Muscle Assessment. European Journal of Translational Myology. 2016; 26: 6015. DOI:https://doi.org/10.4081/ejtm.2016.6015
25. Edmunds K., Gíslason M., Sigurðsson S., et al. Advanced quantitative methods in correlating sarcopenic muscle degeneration with lower extremity function biometrics and comorbidities. PLOS One. 2018; 13(3):e0193241. DOI:https://doi.org/10.1371/journal.pone.0193241
26. Ricciardi C., Edmunds K.J., Recenti M., et al. Assessing cardiovascular risks from a mid-thigh CT image: a tree-based machine learning approach using radiodensitometric distributions. Scientific Reports. 2020; 10(1): 2863. DOI:https://doi.org/10.1038/s41598-020-59873-9.
27. Kern H., Boncompagni S., Rossini K., et al. Long-term denervation in humans causes degeneration of both contractile and excitation- contraction coupling apparatus, wich is reversibile by functional electrical stimulation (FES). A role for myofiber regeneration? Journal of Neuropathology & Experimental Neurology. 2004; 63: 919-931.
28. Boncompagni S., Kern H., Rossini K., et al. Structural differentiation of skeletal muscle fibers in the absence of innervation in humans. Proceedings of the National Academy of Sciences of the USA. 2007; 104: 19339- 19344.
29. Kern H., Carraro U., Adami N., et al. One year of home-based daily FES in complete lower motor neuron paraplegia: recovery of tetanic contractility drives the structural improvements of denervated muscle. Journal of Neurology Research. 2010; 32: 5-12. DOI:https://doi.org/10.1179/174313209X385644
30. Ravara B., Hofer C, Kern H, et al. Dermal papillae flattening of thigh skin in Conus Cauda Syndrome. European Journal of Translational Myology. 2018; 28:7914. DOI:https://doi.org/10.4081/ejtm.2018.7914
31. Hitzig S.L., Eng J.J., Miller W.C., Sakakibara B.M. An evidence-based review of aging of the body systems following spinal cord injury. Spinal Cord. 2011; 49: 684-701. DOI:https://doi.org/10.1038/sc.2010.178
32. Krenn M., Haller M., Bijak M., et al. Safe neuromuscular electrical stimulator designed for the elderly. Artificial Organs 2011; 35: 253-256. DOI:https://doi.org/10.1111/j.1525-1594.2011.01217.x
33. Kern H., Barberi L., Löfler S., et al. Electrical stimulation counteracts muscle decline in seniors. Frontiers in Aging Neuroscience. 2014; 6: 189. DOI:https://doi.org/10.3389/fnagi.2014.00189
34. Zampieri., Pietrangelo L., Loefler S, et al. Lifelong physical exercise delays age-associated skeletal muscle decline. The Journals of Gerontology Series A Biological Sciences and Medical Sciences. 2015; 70: 163-173.
35. Mayr W. Neuromuscular Electrical Stimulation for Mobility Support of Elderly. European Journal of Translational Myology. 2015; 25: 263-268.
36. Protasi F. Mitochondria Association to Calcium Release Units is Controlled by Age and Muscle Activity. European Journal of Translational Myology. 2015; 25: 257-262.
37. Sarabon N., Löfler S., Hosszu G., Hofer C. Mobility Test Protocols for the Elderly: A Methodological Note. European Journal of Translational Myology. 2015; 25: 253-256.
38. Cvecka J, Tirpakova V, Sedliak M, Kern H, Mayr W, Hamar D. Physical Activity in Elderly. European Journal of Translational Myology. 2015; 25: 249-252.
39. Zampieri S., Mosole S., Löfler S., et al. Physical Exercise in Aging: Nine Weeks of Leg Press or Electrical Stimulation Training in 70 Years Old Sedentary Elderly People. European Journal of Translational Myology. 2015; 25:237-242.
40. Sajer S., Guardiero G.S., Scicchitano B.M. Myokines in Home-Based Functional Electrical Stimulation-Induced Recovery of Skeletal Muscle in Elderly and Permanent Denervation. European Journal of Translational Myology. 2018; 28:7905.
41. Scicchitano B.M., Sica G., Musarò A. Stem Cells and Tissue Niche: Two Faces of the Same Coin of Muscle Regeneration. European Journal of Translational Myology. 2016;26(4):6125. doi:https://doi.org/10.4081/ejtm.2016.6125. eCollection 2016 Sep 15.
42. Barberi L., Scicchitano B.M., Musaro A. Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors. European Journal of Translational Myology. 2015;25(4):231-6. doi:https://doi.org/10.4081/ejtm.2015.5227. eCollection 2015 Aug 24. Review.
43. Taylor M.J., Fornusek C., Ruys A.J. Reporting for Duty: The duty cycle in Functional Electrical Stimulation research. Part I: Critical commentaries of the literature. European Journal of Translational Myology. 2018 Nov 7;28(4):7732. doi:https://doi.org/10.4081/ejtm.2018.7732. eCollection 2018 Nov 2.
44. Taylor M.J., Fornusek C., Ruys A.J. The duty cycle in Functional Electrical Stimulation research. Part II: Duty cycle multiplicity and domain reporting. European Journal of Translational Myology. 2018 Nov 7;28(4):7733. doi:https://doi.org/10.4081/ejtm.2018.7733. eCollection 2018 Nov 2
45. Taylor M.J., Schils S., Ruys A.J. Home FES: An Exploratory Review. European Journal of Translational Myology. 2019 Nov 12;29(4):8285. doi:https://doi.org/10.4081/ejtm.2019.8285. eCollection 2019 Oct 29.
46. Quittan M., Sochor A., Wiesinger G.F., et al. Strength improvement of knee extensor muscles in patients with chronic heart failure by neuromuscular electrical stimulation. Artificial Organs. 1999 May;23(5):432-5. DOI:https://doi.org/10.1046/j.1525-1594.1999.06372.x.
47. Deley G., Denuziller J., Babault N. Functional electrical stimulation: cardiorespiratory adaptations and applications for training in paraplegia. Sports Medicine. 2015 Jan;45(1):71-82. DOI:https://doi.org/10.1007/s40279-014-0250-2.
48. Braz G.P., Russold M.F., Fornusek C., et al. Cardiorespiratory and Muscle Metabolic Responses During Conventional Versus Motion Sensor-Assisted Strategies for Functional Electrical Stimulation Standing After Spinal Cord Injury. Artificial Organs. 2015 Oct;39(10):855-62. DOI:https://doi.org/10.1111/aor.12619. PMID: 26471136
49. Crevenna R., Wolzt M., Fialka-Moser V., et al. Long-term transcutaneous neuromuscular electrical stimulation in patients with bipolar sensing implantable cardioverter defibrillators: a pilot safety study. Artificial Organs. 2004 Jan;28(1):99-102. DOI:https://doi.org/10.1111/j.1525-1594.2004.40006.x. PMID: 14720294
50. Coste C.A., Bergeron V., Berkelmans R., et al. Comparison of strategies and performance of functional electrical stimulation cycling in spinal cord injury pilots for competition in the first ever CYBATHLON. European Journal of Translational Myology. 2017 Dec 5;27(4):7219. DOI:https://doi.org/10.4081/ejtm.2017.7219. eCollection 2017 Dec 5.
51. Volodeeva E.A., Yastrebceva I.P., Belova V.V., Baklushin A.E. Evaluating the effectiveness of electrical stimulation and vazoselective alternating electrostatic field at patients with ischemic stroke. Bulletin of rehabilitation medicine. 2015; 1(65): 28-32 (In Russ.)
52. Molchanova E.E. Clinical efficiency of dynamic electroneurostimulation in the acute period of the ischemic stroke. Bulletin of rehabilitation medicine. 2015; 1(65): 33-36 (In Russ.)
53. Evstigneeva L.P., Polyanskaya T.P., Vlasov A.A. The role of dynamic electricneurostimulation in reducing pain and improving quality of life of patients with osteoporosis. Bulletin of rehabilitation medicine. 2015; 3(67): 19-28 (In Russ.)
54. Drobyshev V.A., Gerasimenko O.N., Romanovskaya N.S., Vlasov A.A., Shashukov D.A. Effectiveness of dynamic electrical stimulation in complex treatment in acute period of ischemic stroke. Bulletin of rehabilitation medicine. 2016; 2(72): 21-26 (In Russ.)
55. Kadochnikova E.Y., Vlasov A.A., Alekseeva L.I., Didikina I.G., Ershova O.B., Zaitseva E.M., Korotkova T.A., Popova T.A., Sukhareva M.L., Taskina E.A.,Sharapova E.P., Solodovnikov A.G., Lesnyak O.M. The effectiveness of dynamic electroneurostimulation (DENS) In the pain management in knee osteoarthritis (results of a multicenter randomized study). Bulletin of rehabilitation medicine. 2016; 3(73): 14-22 (In Russ.)
56. Gertsik Yu.G., Gertsik G.Ya. Biophysical preconditions for applying magnetic and electrical stimulation of bone tissue at the rehabilitation activities in traumatology. Bulletin of rehabilitation medicine. 2016; 3(73): 58-61 (In Russ.)
57. Drobyshev V.A., Shpagin L.A., Pospelova T.I. Zechariah O.I., Vlasov A.A. The dynamic electric correction clinical and functional manifestations of peripheral polyneuropathy of patients with multiple myeloma. Bulletin of rehabilitation medicine. 2016; 5(75): 19-24 (In Russ.)
58. Molchanova E.E. The experience of the combined application of dynamic electroneurostimulation and acupuncture in acute period of ischemic stroke. Bulletin of rehabilitation medicine. 2017; 2(78): 63-67 (In Russ.)
59. Tkachenko P.V., Daminov V.D., Karpov O.E. Synchronized application of the exoskeleton with functional electrostimulation in the spinal cord injury patients. Bulletin of rehabilitation medicine. 2017; 3(85): 123-130 (In Russ.)